The realization space is [1 0 1 0 1 0 x1^2 - x1 x1 x1^2 - x1 x1^3 - x1^2 x1^2] [1 1 0 1 0 0 2*x1 - 1 x1^2 - 2*x1 + 1 2*x1 - 1 2*x1^3 - 5*x1^2 + 4*x1 - 1 2*x1^2 - 3*x1 + 1] [1 1 0 0 1 1 0 x1^2 2*x1^2 - x1 2*x1^3 - x1^2 x1^3] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (16*x1^13 - 128*x1^12 + 408*x1^11 - 680*x1^10 + 657*x1^9 - 382*x1^8 + 132*x1^7 - 25*x1^6 + 2*x1^5) avoiding the zero loci of the polynomials RingElem[x1^2 - 3*x1 + 1, 2*x1 - 1, x1 - 1, x1, x1^4 - 3*x1^3 + 7*x1^2 - 5*x1 + 1, x1^3 - 2*x1^2 + 3*x1 - 1, 3*x1 - 1, x1^3 - 5*x1^2 + 4*x1 - 1, x1^2 + x1 - 1]